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Abstract

The relationship between microscopic local potentials and
charges in a system of toner particles placed on a conduc-
tive medium is analyzed. Expressions for electrostatic forces
acting on the particles, either insulating or conductive, are
derived for a few basic configurations, including linear
chains of particles lying flat on the medium or standing up
normal to its surface, as well as 2D monolayers.

Introduction

Typical magnetographic engines use grounded conductive
media. Although the developing force acting on toner par-
ticles is magnetic by nature, auxiliary electrostatic forces
are often used, either to control development or help trans-
fer 1. Such forces are usually created by applying a bias
voltage to an external metal plate positioned in front of the
medium. Macroscopically, associated electrostatic poten-
tial and field distributions depend only on medium/plate
geometry and bias voltage. Microscopically, the presence
on the medium surface of a system of charged toner par-
ticles generate local perturbations to those potential and
field. The electrostatic force on one given particle in the
system stems from the interaction of the particle charge
with the local electric field, i.e., the macroscopic field modi-
fied by microscopic fields from other particles and by their
interactions with the medium nearby. In the case of insu-
lating precharged particles, all charges are preset, which
makes computation of forces rather straightforward. In the
case of conductive toner, the particle charges are induced
charges that have first to be determined based on local elec-
trical conditions.

Local Potentials and Charges

Let us consider a system of n particles (Figure 1). Particle
Pi (i=1..n) of radius ri is located at point (xi,yi,zi). Plate-to-
medium separation is d, bias voltage is U0. Basic assump-
tion is: ri ≤ zi«d. We further assume: (i) particle charges qi

are surface charges and therefore small, of the order of ri
2;

(ii) microscopic fields Ei created by those charges affect
the macroscopic field E0 locally only; (iii) d is small com-
pared to plate dimension L, itself smaller than medium ra-
dius Rd : d«L<Rd ; therefore geometry is approximated by
that of two parallel infinite planes and macroscopic field

E0 is uniform of magnitude U0 /d ; (iv) local electrostatic
potential vi is considered constant over the small volume
occupied by particle Pi; (v) medium is considered a perfect
conductive plane; (vi) interactions of charges with the bi-
ased plate are neglected because of the larger distance in-
volved, if particles stay close to medium.
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Figure 1. System of particles near surface of grounded conduc-
tive medium with parallel plate at constant potential

Condition (v) justifies the use of image theory, i.e., the
medium surface at z=0 is replaced by a virtual plane lo-
cated at z=-d, biased at -U0, and by a system of virtual par-
ticles Pi

*, images of real particles Pi through plane z=0; i.e.,
virtual charges -qi located at point (xi,yi,-zi). This warrants
plane z=0 to be equipotential v=0, as it was in the original
system.

The local electrostatic potential vi at point (xi,yi,zi) oc-
cupied by particle Pi then reads:
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where dij and dij
* are magnitudes of distance-vectors dij and

dij* in Figure 1.
The first term in Equation 1 is the macroscopic poten-

tial due to the biased plate. The second term is the sum of
all local perturbations due to microscopic charges, either
real or virtual. In this second term, the first element is the
microscopic potential due to the particle charge itself, while
the second element describes its interaction with the me-
dium plane; the third element is the potential induced by
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all other particles, while the fourth element similarly de-
scribes their interactions with the medium plane.

Equation 1 actually produces n linear equations (i=1..n)
that relate 2n unknowns qi and vi. To proceed further, we
must write n other independent equations. This will be done
either by assuming that the qi are given (case of insulating
precharged particles) or by setting the vi to zero (case of
conductive particles contacting the conductive medium).

Electrostatic Forces

In all cases, once the qi are known, the force Fi acting on
particle Pi reads:
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     Fxi = Fi ⋅ i  ;       Fyi = Fi ⋅ j  ;      Fzi = Fi ⋅ k        (2)

where i, j and k are the unit vectors of axes x, y and z.
For actual computation with high number of particles,

it is easier to use the equivalent matrix equations:
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where Fx, Fy, Fz are column-vectors of components Fxi, Fyi,
Fzi, q is the column-vector of element qi, Q is the diagonal
matrix of elements qiδij (δij are Kroneker symbols, i.e., δij

=1 if i=j and 0 otherwise) and X, Y, Z are matrices of ele-
ments:
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Insulating Precharged Toner

For simplicity, we assume now that all particles have same
radius r and same charge q, as determined, e.g., by precharge
(corotron) conditions.

Single Precharged Particle on Medium
Here z=r and Equation 2 yields the simple result:

Fx = Fy = 0  ;         Fz = Fe − F0

with   Fe = −q
U0

d
    and    F0 =

1

4πε0

q2

(2r)2
  (5)

Fz is a quadratic function of charge q. For it to be positive,
q and U0 must be of opposite signs and |q| shall not exceed
a critical charge qc :

       q  <  qc = 4πε0 (2r)2 U0

d
(6)

With typical values: U0=-1000V; d=1mm; 2r=10µm;
we get qc≈11fC (massic charge ≈20µC/g).

Fz is maximum if q=qc/2, leading to Fe = 2F0 and Fz=F0.
In case of above example, Fzmax≈2.8nN with q≈5.5fC
(≈10µC/g).

Horizontal Chain of n Precharged Particles
Here xi=2(i-1)r; yi=0; zi=r and Equation 2 leads to:

Fxi = − F0 j − i( ) 1
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with numerical values shown in Figure 2. On edges of long
chains, Fx →≈0.75F0, while image force |Fz-Fe|→≈1.5F0;
thus no dispersion will occur in absence of bias (U0=0) as
long as toner-to-medium friction coefficient remains ≥0.5.
At center of long chains, |Fz-Fe|→≈2F0; thus, with bias
(U0≠0), Fz will be positive if q<qc/2, with maximum value
being reached for q≈qc/4.
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Figure 2. Normalized image force on chains of insulating
precharged particles lying flat on conductive medium
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Figure 3. Normalized image force on chains of insulating
precharged particles standing up normal to conductive medium

Vertical Chain of n Precharged Particles
Here, xi=yi=0; zi=(2i-1)r, thus Equation 2 yields Fxi=0

and:

Fzi = Fe − F0
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with numerical results shown in Figure 3. For n≥2, image
force always repulses the upper top particle, making that
type of chain unstable in the absence of other forces (mag-
netic or other).
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2D Monolayer of Precharged Particles
From Equation 2, force on particle Pij in an nxm-array is:

Fxij = −F0 (k − i)
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with expression for Fyij symmetrical to Fxij. From Equa-
tion 9, it is found that maximum Fx and Fy are reached on
the array corners, with such signs that tangential force Ft

always pushes particles outside (dispersion), while Fz is
minimum at center. At center of large arrays, |Fz-Fe|→ ≈
6.1F0, thus net force is defined positive everywhere in the
array only if q<≈qc/6. Table 1 gives numerical values for
square arrays of increasing size.

Table 1. square arrays of insulating particles*

Array size 1x1 2x2 3x3 4x4 5x5

Ft/F0 at array corners 0 1.14 1.35 1.42 1.45

(Fz-Fe)/F0 at corners -1 -1.90 -2.25 -2.42 -2.52

(Fz-Fe)/F0 at center -1 -1.90 -3.18 -3.67 -4.23

Table 1. square arrays of insulating particles

Array size 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5

Ft/F0 array corner    0 1.14 1.35 1.42 1.45
(Fz – Fe)/F0 corner   –1        –1.90       –2.25       –2.42       –2.52
(Fz – Fe)/F0 center   –1        –1.90       –3.18       –3.67       –4.23

Inductively Charged Conductive Toner

All particles now are maintained at zero potential by con-
tact between them and the medium. Equating all vi to 0 in
Equation 1, unknown induced charges qi are resolved as:

q = −4πε0
U0

d
C−1 z (10)

where q and z are the column-vectors of elements qi and zi

respectively, and C is the matrix:
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difference of two symmetrical matrices C1 and C2, where
C1 represents the interaction of the (real) particles, and C2

that of the medium plane (virtual particles). Once the in-
duced charges qi are determined, Equation 3 yields the force.

Single Conductive Particle on Medium
Here, C reduces to the scalar 1/2r, and induced charge

is:

q0 = − 2πε0 2r( )2 U0

d
(12)

q0 is used hereafter to normalize all induced charges (note
that it is the optimum charge qc/2 of insulating toner).

Net vertical force (field force Fe minus image force) is:

Fz1 = 4πε0 r2 U0
2

d2 (13)

It is nothing but F0 as would yield Equation 5 with q=q0

(note also that Fe=2F0).

Horizontal Chain of Conductive Particles
We have z=r1, 1 being the vector with all elements

equal to 1 and C1 and C2 can be written as:
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where I is the unit matrix, J the matrix obtained from I by
shifting the main diagonal of 1’s one position to the right
(i.e., jkl=1 if l-k=1, zero otherwise) and J* is the transpose
of J. Such structure allows for easy construction of C.
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Figure 4. Normalized charges induced in chains of conductive
particles lying flat on conductive medium
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Figure 5. Normalized forces on chains of conductive particles
lying flat on conductive medium (Fz:- - - image, ––– net)

Figure 4 shows normalized charges qi/q0 for horizon-
tal chains of various length. The charge is maximum on
edges where it rapidly stabilizes around 0.79q0. Figure 5

* Original table has been modified by author. Revised table is
    shown below original



Chapter V—Development and Transfer—307

shows associated normalized force. On edges of long chains
Fx→≈0.33F0 and Fz→≈0.85F0, thus edge particle trajec-
tory would start at ≈ 21° angle from normal.

Vertical Chain of Conductive Particles
The first particle in the chain contacts the medium. El-

ements of z now are defined as: zj=(2j-1)r, and:

   2rC1 = 2I + 1
k

Jk + J∗k( )
k =1

n−1

∑  ;  2rC2 = 1
k

Kk
k =1

2n−1

∑ (15)

where Kp is the matrix of elements: kij=1 if i+j=p and 0
otherwise. Here too, construction of C is easy.

Figure 6 shows normalized charges for chains of par-
ticles normal to the medium. The upper particle in the chain
always takes the largest charge, always greater than q0. The
second upper particle gets a charge several times lower.
Thereafter, charges of more inner particles decrease almost
linearly down to a practically neglectible value for the last
particle touching the medium.
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Figure 6. Normalized charges induced in chains of conductive
particles standing up normal to conductive medium

Figure 7 shows associated normalized net forces. Ver-
tical chains tend to charge strongly at the upper end, and
net force, when adding field force Fe, is positive only on
that last particle. The second upper particle actually is
slightly pushed against the medium. In the absence of a
stronger (magnetic) force tending to maintain the particles
on the medium, that kind of chain is nevertheless expected
to transfer completely, by successive jumps of the extreme
particle, chain length getting shorter and shorter. The dy-
namics of such process is beyond the scope of this paper.
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Figure 7. Normalized forces on chains of conductive particles
standing up on conductive medium (Fz: - - - image, ––– net)

2D Monolayer of Conductive Particles
For a n × n array, C takes the form of a n2 × n2 matrix,

made up of n2 blocks, whose structures though relatively
easy to figure out are not indicated here. Table 2 shows
numerical results for square arrays of increasing sizes. Tan-

gential (dispersive) force at corners Ft rapidly stabilizes at
≈0.3F0; normal force Fz is minimum at edges.

Table 2. Square arrays of conductive particles*

Array size 1x1 2x2 3x3 4x4 5x5

Ft/F0 at array corners 0 0.388 0.330 0.329 0.323

Fz/F0 at array corners 1 1.36 1.28 1.30 1.30

Fz/F0 at array center 1 1.36 1.74 1.67 1.60

Table 2. Square arrays of conductive particles

Array size 1 × 1 2 × 2 3 × 3 4 × 4       5 × 5

Ft/F0 array corner    0          0.388 0.329 0.329       0.323
Fz/F0 array corner    1          0.520 0.541 0.516       0.509
Fz/F0 array center    1          0.520 0.155 0.180       0.201
Fz/F0 average    1          0.520 0.401 0.337       0.299

Note that Tables 1 and 2 cannot be directly compared
since values of F0 will usually be different for insulating
and conductive toners. Absolute comparison requires addi-
tional assumptions as to the precharge given to the insulat-
ing toner. Two examples are shown in Fig. 8 and Fig. 9†

Insulating versus Conductive Toners

The normalized values of Tables 1 and 2 cannot be directly
compared since values of F0 will usually be different for
insulating and conductive toners. Absolute comparison re-
quires additional assumptions as to the precharge given to
the insulating toner. Also the value of the coulomb electric
force Fe has to be taken into account.
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Figure 8. Vertical force on array of 5×5 conductive particles;
size 10 µm; bias U0=-800V at d=1mm
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Figure 9. Vertical force on array of 5×5 insulating particles; size
10 µm; bias U0=-1200V at d=1mm; precharge q0/6≈2.2fC

* Original table has been modified by author. Revised table is
    shown below original
† Author has modified paragraph. Revised paragraphs follow
    shadded area.
‡   Original Figures 8 and 9 are now disregarded.

‡
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Figure 8. Vertical force on array of 5x5 conductive particles; size
10 µm; bias U
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Figure 9. Vertical force on array of 5x5 insulating particles; size
10 µm; bias U
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Figure 10. Vertical force on array of 5x5 insulating particles;
size 10 µm; bias U
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Figure 11. Vertical force on array of 5x5 insulating particles;
size 10 µm; bias U

0
=-1000V at d=1mm; precharge q≈3 fC

Two examples are shown in Fig. 8 and Fig. 9, where
toner size is 10 µm, bias voltage U

0
=1000 v and d=1mm.

Precharge q of the insulating toner is close to its optimal
value 2fC≈q

c
/6. Although the average force over the array

happens to be of the same order for both types of toner, a
stronger edge effect is exhibited by the conductive one
(larger charges induced at corners).

Fig. 10 and Fig. 11 show how the transfer force distri-
bution is modified for charges q respectivelly lower (q=1fC)
and larger (q=3fC) than the optimal charge ≈q

0
/6. Lower

values yield weaker force but more uniform distribution,
while higher values tend to transfer the edges but not the
center of the array.

Conclusion

Electrostatic forces appear on conductive toner only where
and when an electric field exists (e.g., when entering an
electrostatic transfer nip). In contrast, insulating precharged
particles can benefit from image electrostatic forces as soon
as they get charged (i.e., long before entering transfer nip).

When electrostatic forces build up on conductive toner,
vertical components always immediately tend to remove
particles from the medium: such premature transfer may
cause image fuzziness. With precharged insulating toner,
preexisting image forces tend to hold particles onto the
medium: disturbances such as pneumatic forces (due to high
speed and/or airtight papers) can be overcome 2.‡

Transfer force on edges of 2D particle array is mini-
mum for conductive toners and maximum for precharged in-
sulating toners (Figures 8 and 9): precharged insulating toners
generally yield sharper edges than conductive toners.

The self-maintaining image force of precharged insu-
lating toners directly opposes any subsequent transfer forces:
charges should not exceed a critical value depending on the
bias voltage (this point experimentally well verified).

As a result, maximum optical density attainable with
insulating toners is usually lower than that of conductive
toners, but it is more stable as regards variations of the elec-
tric field (e.g., with humidity), since dependence of verti-
cal force on bias voltage is just linear instead of being
quadratic for conductive toners (Equations 2 and 10).

Tangential repulsive forces on corners of 2D particle
arrays are usually higher for conductive toners than for
precharged insulating toners: precharged insulating toners
generally yield sharper edge prints than conductive toners.

The self-maintaining image force of precharged insu-
lating toners directly opposes any subsequent transfer
forces. To be transferred by a bias electric field, charges
should not exceed a critical value depending on the bias
voltage (this point experimentally well verified).

Maximum optical density attainable with insulating
toners may be lower than that of conductive toners, but it is
more stable as regards variations of the electric transfer field
(e.g., with paper water content), since dependence of verti-
cal force on bias voltage is just linear instead of being qua-
dratic for conductive toners (Equ. 2 and 10).
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